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Explainable AI: How Do We Know What AI Is ‘Thinking’?
ALAN M. REZNIK, MD, MBA, FAAOS

editor’s note: This is the sixth article in 

a series on artificial intelligence (AI) appli-

cations in orthopaedics and the future of 

medicine. This article discusses the ability 

to understand the “thought” process of 

AI and strategies required to make AI 

decision -making more transparent. The 

prior articles have reviewed the basics of 

AI, how AI can read an X-ray, natural lan-

guage processing, medical ethics, and the 

differences between shallow and deep AI 

as it applies to the practice of medicine. 

Visit www.aaosnow.org to read more.

AI ‘thinking’
Scholars have pointed to Stonehenge 

and 900 similar, smaller, manmade 

rock formations as the earliest forms 

of artificial intelligence (AI). The 

stone formations use rock positions 

and photons from the sun to accurately 

time winter and summer solstices. The 

photon-rock “machines” helped early 

societies to “predict” the best timing 

for planting. Other “thought” machines 

followed. From clocks to DaVinci’s 

autotoms to Charles Babbage’s me-

chanical calculating machine (circa 

1830), mechanical devices continued 

to advance. When Ada Lovelace cre-

ated the first program “algorithm” for 

Babbage’s machine, the possibilities 

truly expanded. Still, mechanical de-

vices were limited by speed and a very 

small number of memory states. The 

limitations changed when electronic 

circuits appeared. 

Using the first electronic computing 

machines in 1950, Alan Turing wrote 

“Computing Machinery and Intelli-

gence.” He noted that Mr. Babbage’s 

mechanical calculator was limited 

to solving equations with up to only 

seven terms or a power of seven (107). 

In Turing’s day, electronic machines 

had 1050 possible states, far more than 

Babbage’s, yet far less than 100 pieces 

of paper with 50 lines containing 30 

base 10 digits per line 10(100x50x30) (or 

10150,000) possible states. In 1969, NASA 

engineers for the Apollo Moon Mission 

used “larger” computers costing mil-

lions to make critical computations for 

the spacecraft. Today’s smartphones fit 

in your pocket, cost merely hundreds 

of dollars, and can process instructions 

at a rate of more than three billion per 

second. We know that this is more than 

120,000 times faster than the Apollo 

machines, and today’s cell phones have 

gigantic memories with 21,000,000,000 (or 

10301,029,996) possible states. 

Understanding that massive memory 

was possible in the future, Turing be-

lieved that someday machines would 

“imitate” human thinking. He invent-

ed the “Turing test,” during which a 

human blinded to the source of the 

interaction could not tell the difference 

between a human response and a ma-

chine response. To this end, in the late 

1950s, the perceptron, an electronic 

representation of a human neuron, 

was built. The electronic model of a 

human nerve led to the idea of creating 

a digital brain. In 1956, at Dartmouth 

University, this included artificial gen-

eral intelligence (AGI) and artificial 

super intelligence (ASI). AGI would be 

a machine that could solve any problem 

without programming, and ASI would 

surpass human thinking. AGI and ASI, 

in fact, overpromised and could not 

deliver. Like the dotcom bubble, many 

investors lost their money as companies 

went bankrupt.

As noted in a prior article in this 

series, the failure of early AI could be 

blamed on the cost of a megabyte. In 

the 1960s, one megabyte cost $2 mil-

lion. Now, one megabyte costs less than 

one hundredth of a penny. Coincidently, 

advanced Nvidia video chips for gam-

ing are optimized for the matrix algebra 

needed for today’s AI brains to work. 

With the combination of massive mem-

ory, the cloud, complex calculations, 

and programing languages like Python 

and TensorFlow, we are moving cars, 

predicting items on Amazon, directing 

search preferences, discovering new 

treatments, reading medical papers, 

checking retinas for diabetic changes, 

and predicting outcomes. 

Man versus machine
In general, humans are very good at 

extrapolating small amounts of data to 

come up with the correct answer, and 

AI is far better at extrapolating from 

very large amounts of data. For exam-

ple, part of Memorial Sloan Kettering’s 

100,000 prostate slide library is being 

used to teach AI to find prostate cancer. 

It finds consistencies across more than 

40,000 slides using unsupervised learn-

ing with high specificity. In contrast, it 

has been shown that after 39 hours of 

reading slides, human pathologist error 

rates increase. The liability for humans 

as pathologists is fatigue (Table 1). In 

contrast, AI algorithms working 24/7 

just don’t get tired. The AI logic infer-

ences, once trained, remain constant. 

At the same time, these networks based 

on thousands of perceptrons using su-

pervised or unsupervised learning do 

not explain their decisions. Moreover, 

we don’t know whether the process for 

the decisions being made are based on 

tried-and-true medical reasoning or 

convoluted logic using factors we can-

not fully appreciate or even understand. 

Logic gone awry
As infallible as AI may seem, an earlier 

article in this series covering ethics 

and AI discusses how data can contain 

bias. This may be hidden by proxies for 

demographic, racial, or socioeconomic 

factors. Zip code, age, sex, and even 

surname can induce biased analyses. 

Very large datasets are full of unknown 

biases. Therefore, using them safely 

for medical decisions creates concerns 

about ethics and fairness. In 2019, a 

major insurance carrier applied an 

AI algorithm to direct medical care 

to those in whom its own outcome 

predictions revealed greatest benefit. 

Although that was seemingly a logical 

and cost-saving move, later review 

found the new allocations to be racially 

discriminatory. In retrospect, the plan 

was deemed unacceptable and stopped. 

One could argue that the harm was al-

ready done.

The need for explainable AI
The problem for perceptron-derived AI 

is in the beauty of how it works. Unlike 

Stonehenge, DaVinci, and Mr. Turing, 

modern neural networks are trained to 

solve a problem by looking at massive 

amounts of data. The network of per-

ceptrons “learn” relationships between 

the training dataset and the desired out-

puts. The AI “brain” predicts the best 

action based on what it has learned, yet 

there is no explanation given and the 

learning algorithms generally remain 

hidden. Here, we need to look to exam-

ples to best understand the implications 

of this point. 

Once trained, a neural network 

algorithm looking for lung nodules 

can separate X-rays into normal and 

not normal. At first, it did not show 

an abnormality’s location. A clever 

programmer decided to place a blank 

square on the film and move it around 

in increments. When the AI reading 

converted back to normal, the logic 

dictated that the blank must be covering 

the abnormality (in the lung, a potential 

tumor, calcification, or pneumonia). The 

abnormalities found also included rota-

tion of the right and left X-ray marker 

(Fig. 1a and 1b), a change in marker 

type, initials of the person taking the 

films, or an item of clothing overlapping 

on the film (Fig. 1c)—all distractions a 

Fig. 1 (A) Right marker horizontal, (B) right marker 

vertical, and (C) Reebok knee sleeve on knee
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Errors per week 39 hours 45 hours 50 hours 60 hours

None 78% 43% 32% 22%

At least one 22% 57% 68% 78%

At least two 18% 45% 50% 60%

At least three 12% 30% 35% 43%

At least four 5% 12% 16% 18%

Table 1 The percentage of pathologists experiencing adverse events increases significantly with a 

workload greater than 39 hours per week
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human reader would ignore. In that the 

AI did not explain its own “learned” 

definition of abnormal findings, the sort-

ing process could lead radiologists into 

looking for tumors that were not there.

Similarly, an AI algorithm looking 

for X-rays containing a fracture was 

successful and accurate. It sorted films 

into those with a fracture present and 

those without a fracture. Looking deep-

er, machine type and location of the 

X-ray unit were found to be factors in 

diagnosing a fracture. The algorithm 

“understood” that emergency depart-

ment X-ray units are more likely to be 

positive for a fracture. When location 

data were stripped from the decision 

process, the algorithm was barely better 

than random selection. 

In contrast to these mistakes in logic, 

there are times AI can get it completely 

right. In the 100,000-slide training set 

used by AI to detect prostate cancer, 

when peeling back the layers of the 

neural network for an explanation of the 

diagnostic method, researchers found 

many of the AI pathology findings used 

by the algorithm to be the very same 

features that human pathologists use to 

make the same diagnosis. 

These examples point out unexpected 

pitfalls in AI’s ability to read X-rays 

and the importance of having AI ex-

plain how it got a result. Even when AI 

is on the mark, the result should be val-

idated. In Europe, AI must explain itself 

to be used in medical treatment, and in 

the United States, AI must be approved 

by the Food and Drug Administration 

(FDA) and has to stop all additional 

learning after approval in order to be 

used. The term for this type of AI and 

the logical validation requirement is 

explainable AI, or XAI. 

How do we get AI  
to explain itself? 
AI uses natural language processing 

(NLP) to read articles, uses image pro-

cessing to look at pathology slides, and 

aggregates population data to sort med-

ical treatments to maximize benefits. 

Each requires very different strategies 

to explain an algorithmic outcome. 

Moving a blank square on an X-ray is 

only one example. AI was “looking” at 

films and, because of artifacts, it knew 

where the X-ray was taken better than 

the humans viewing the same films and 

used that information (i.e., X-ray ma-

chine type and location). Discovering 

the information being used and correct-

ing for it is a much harder problem to 

solve. Certainly, the algorithm did not 

tell us what it was doing; the extra data 

it gleamed from the films just “worked” 

well, even if not medically justified.

Other strategies for XAI include 

decision trees and the so-called “forest 

of trees.” Decision trees are used fre-

quently in well-accepted treatment 

algorithms. For XAI, we start with a 

treatment option tree, and AI can use 

it as the backbone for all the data it 

processes. The algorithm can adjust the 

tree or add branches, change the ques-

tions at the nodes, and make decisions 

at each node. Then the program can 

report back the path of nodes and the 

decision at each one. Seeing the actions 

at the nodes of the tree, we have a win-

dow on the AI “thought” process. 

In a forest of trees, we let the AI 

create a large random set of decision 

trees from the data. It uses no precon-

ceived notions about the data. It creates 

questions at each node and then uses a 

training set to find the best single “tree” 

for the desired decision-making. Going 

forward, we can see the “best” tree and 

the values at each node in order to un-

derstand how the AI reasoned out the 

diagnosis or treatment plan. Again, the 

tree and nodes become the explanation 

of the logic being used. 

The problem can be more challenging 

for NLP. One current solution is used in 

a medical diagnosis application. It uses 

NLP to “read” hundreds of thousands of 

patient charts. After asking sequential 

questions about a patient’s symptoms, 

the NLP engine finds charts of patients 

with similar symptoms. It selects more 

questions to narrow down the relevant 

charts to make a diagnosis. Eventually, 

it gives the patient the odds of a given 

treatment choice being correct for him 

or her, not a single diagnosis. For ex-

ample, it will indicate that 62 percent of 

similar patients with “chest pain” had 

gastrointestinal reflux and 53 percent 

of those patients used omeprazole 

for treatment (Fig. 2). The program 

avoids explanation and hence liability 

concerns by using the patient’s own 

answers to find a potential diagnosis. 

It goes further by not giving an exact 

treatment directive, giving only proba-

bilities. It also adds how many patients 

with the same symptoms saw a doctor 

for treatment. It suggests doing so if the 

odds indicate you should see a doctor. It 

is not a single diagnosis-maker, it’s an 

odds-maker, and the patients are given 

the odds, not an exact plan. 

For images, explainable AI may take 

other forms. Diagnosis may be limited 

to a menu, and the logical method (like 

the location of the tumor and radio-

graphic parameters) may be required as 

part of the report. In one case, a newly 

approved AI program gives relative 

Kellgren and Lawrence (KL) grading 

for osteoarthritis based on an AI eval-

uation of plain films of the knee (Fig. 

3). The FDA approval requires showing 

factors that explain the AI function. In 

this case, the software uses joint space 

narrowing, sclerosis, and osteophytosis, 

as well as the actual AI measurements 

of the joint space in millimeters, to find 

the KL value. Although the software is 

capable of reporting the actual grade 

level, the FDA prohibits it from giving 

a specific KL grade of zero through 

four. Instead, it reports KL grade less 

than or equal to 2 or greater than 2, 

as well as the presence or absence of 

the three factors. The FDA’s decision 

was based on the understanding that 

clinical cutoffs for KL value are more 

useful and more forgiving relative to the 

values themselves (Fig. 3b, available 

in the online version). In contrast, the 

European Union (EU) permits the full 

KL grade and a numerical grade for each 

factor (Fig. 3c, available in the online 

version). The EU presentation is a more 

granular representation of the data. Of 

note, in my own beta testing of the pro-

gram, having seen both presentations, I 

preferred to have the more granular, real 

KL values with the factors displayed 

combined with my own judgments. The 

FDA does not agree.

The future
From the examples given, we can see 

how AI must be able to explain itself; in 

medical applications, that varies greatly 

pending the data sources and the AI 

algorithms used. Governing bodies such 

as the FDA may have the final word 

on what explanations are needed and 

limit outcome data type and form based 

on the approval process. Many times, 

the explainable AI solution may not be 

obvious or easy to implement. Each AI 

algorithm will present its own unique 

challenges when it comes to explaining 

its results. Lastly, AI may use factors and 

proxies for those factors as part of mak-

ing its predictions. We must be aware 

that the outcome, when AI does explain 

itself using XAI standards, may deliver a 

novel approach to a problem, yield a bia-

sed outcome, or just plain surprise us.

References for the studies cited can be found 

in the online version of this article, available 

at www.aaosnow.org. 
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Fig. 2 K Health diagnosis process after a series of symptom-related questions
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Fig. 3 Workflow for ImageBiopsy KOALA™ artificial intelligence analysis of plain films 
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