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Evolution Versus Revolution in AI:  
Why the Distinction? 
ALAN M. REZNIK, MD, MBA, FAAOS

editor’s note: This is the fifth article in an 
ongoing series on artificial intelligence (AI) 
in orthopaedics. Previous articles tackled 
topics such as the origins of AI, how AI 
reads X-rays, natural language processing 
in medical decision-making, and medical 
ethics related to AI. This article explores 
the difference between shallow and deep 
AI, as well as the phenomenon of AI creep. 
Visit www.aaosnow.org to read more.

The beginning
In the 1800s, Charles Babbage designed 
a mechanical calculating machine (Fig. 1)  
that could, by design, solve complex 
math equations with unheard of accu-
racy. Ada Lovelace proposed a way of 
programming algorithms for his design. 
Of note, due to a lack of funding and 
machining technology, Mr. Babbage’s 
machine was not built until 2002. When 
completed, the machine consisted of 
8,000 parts and weighed 10 tons. Its 
hand-cranked action can be viewed 
on YouTube. Mr. Babbage’s machine 
made him the father of computers, and 
Ms. Lovelace’s prescribed algorithms 
made her the mother of programming. 
One could say the original computer 
revolution was Mr. Babbage’s machine, 
and Ms. Lovelace’s programs were the 
next leap. The original gears have since 
evolved into microchips in newer ma-
chines. The mystery remains where the 
next revolution or evolution in artificial 
intelligence (AI) will take us. It may 
already be here. Quantum computing 
has the power to perform calculations in 
200 seconds that would take the world’s 
most powerful current supercomputer 
more than 10,000 years, and this pro-
cessing power could revolutionize the 
ability of future AI to handle unimag-
inable quantities of data, while solving 
the most difficult problems. 

What separates Babbage/
Lovelace AI from modern AI? 
One answer is the availability of vast 
amounts of memory at a very low cost. 
In the early 1960s, one megabyte cost 
approximately $2 million. Today, one 
megabyte costs less than one-hun-
dredth of a penny (Fig. 2). In addition 
to the increasingly affordable memory 
required for AI, the development of 
electronic models of neurons has led 
to neural computing networks. These 
“electronic nerve” networks can learn 
from large amounts of data rather than 
just solve programable algorithms. The 

first electronic model of the human neu-
ron, the “perceptron,” was designed in 
the 1950s (Fig. 3), and it has progressed 
to the modeling of many types of dif-
ferent computer neurons with a variety 
of unique functions. These electronic 
neurons have allowed the formation of 
mathematical versions of neural net-
works that operate like a small child’s 
brain (Fig. 4)—very pliable and eager 
to learn. However, this is not the full 
story, because AI has a preexisting and 
coexisting sibling that does not require 
a neural network—shallow AI. 

Shallow AI
The main reason we are not concerned 
about all of the AI devices around us is 
that they are mostly shallow AI devices. 
Like Ms. Lovelace dreaming about pro-
graming Mr. Babbage’s machine, they 
make a lot of sense to us. We write an 
algorithm or program to measure time, 
the clock works, the algorithm does not 
change, and we take it for granted and 
trust it. 

For example, math nerds know that a 
body mass index (BMI) calculator gives 
us the answer to the equation BMI = 
703 x (weight in pounds) / (height in 
inches)2. We enter information into an 
app, and it gives us a number. Most 
patients have no understanding of how 
we get to the number. Yet we use the 
number for medical decision-making 
without any doubts about its value. 

Similarly, we trust end-tidal CO2 moni-
toring and pulse oximetry in the operating 
room. We may not know or understand 
the many assumptions and approxima-
tions used in the calculations, nor do we 
care. They are often based on the math, 
chemistry, and physics of the devices we 
are modeling. Again, the models are test-
ed and proved, and the error margins are 
known; therefore, they are trusted. Only 
in special outlier cases do they fail us, 
and with better technology, such failures 
are becoming exceedingly rare. Shallow 
AI is everywhere, and we use it every 
day without a thought.

AI creep
AI, in the strictest sense (mechanical, 
electrical, and even quantum-based), 
processes information in a way that a 
human might without a human brain 
doing the work. Everything we touch 
that has a program in it or that does a 
task that we would have done with a 
pencil and paper is AI. This includes 

performing long division on a calcu-
lator, making change at McDonald’s, 
plotting a course with a GPS (global 
positioning system), creating an ul-
trasound image from sound waves, 
graphing an electrocardiogram, using 
a picture archiving and communica-
tion system to measure a Cobb angle, 
and even winding up a simple calendar 
watch—all shallow AI. It turns out, the 
more familiar AI becomes, the less we 

think of it as AI. Hence, the phenome-
non of AI creep: The simpler the device 
that performs the AI task, the more we 
rely on it, and the less it seems like the 
device is doing a significant brain task. 
In short, AI is everywhere and is evolv-
ing every day without much concern. 

Deep AI
Deep AI is different. Deep AI is truly 
like a child who learns from the world 

Fig. 2 Cost per megabyte per decade

The cost of megabytes of memory over time in dollars by powers of 10 (e.g., 6 = $1,000,000; 0 = $1; -2 = one 
penny). In the 1960s, the original core memory was made by hand using tiny iron “rings” with two wires, one 
to flip the magnetic direction for zero or one and the other wire to read the set value. Each ring was hand 
wired, wrapped, and then placed by hand on a circuit board. It took thousands of workers to make a few 
megabytes.
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Fig. 1 Charles Babbage invented a calculating machine, known as the difference engine, in the early 1880s.
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around him or her. Sometimes we 
use “supervised learning”: Humans 
review the data and point out the in-
formation needed. For example, teams 
of thousands of people identify ab-
normalities to an AI system every day 
so it may learn how to “see” a tumor 
from a gastrointestinal study, read an 
X-ray, or interpret a command from 
Siri. We experiment with different 
deep AI techniques and specialized 
electronic neurons, configured in lay-
ers, like the retina in real life, and see 
how well these electric brains work 
(pun intended). 

Deep AI assumptions
The data we use to train a network 
represent all population data fairly. 
It has a cross-section of normal and 
abnormal findings that match the “pa-
thology” of interest. The presentation 
of the data is the same in the unknowns 
to be examined later. A past dataset 
represents the future population data, 
which will not change with time. The 
actions of the AI itself on the popula-
tion will not change the population data 
in the future. 

To “trust” an AI system when making 

medical decisions, we need to know 
whether our trained network can ignore 
unimportant differences in the data 
and still function properly. In addition, 
as discussed in a previous article in 
this series about AI ethics, we need to 
ensure that these technologies do not 
propagate bias or disparities in health 
care. Some of those challenges are still 
being solved. Lastly, the method of 
collection of the data must have internal 
consistency with the collected training 
set. For example, when training systems 
to read X-rays, different machines may 
have different background electronic 
“noise” based on power supply, age of 
the X-ray beam, and the quality of the 
image-collecting device. Such differ-
ences produce many types of noise and 
can throw an AI engine off when test 
cases are not from the same equipment 
as the original training set.

The FDA’s role in medical AI
The Food and Drug Administration 
(FDA) assesses devices with fixed al-
gorithms in one way, improvements in 
algorithms in another way, and learn-
ing devices in a third way. Ultimately, 
a device’s ability to learn as it goes 

has a higher concern for future patient 
safety than fixed algorithms. See the 
sidebar for differences between shal-
low and deep AI devices. Even so, the 
FDA may require a trained network 
to use the validated initial training 
without changes. The network cannot 
“improve” itself unless patient safety 
is protected. For now, a true, FDA-ap-
proved AI neural network is frozen in 
that state of its trained function until a 
new FDA application is made.

The future 
As we continue the revolution of AI 
and watch the evolution of shallow 
and deep AI, we need to be cognizant 
of AI creep. We should be mindful of 
assumptions in using current training 
datasets as predictors of future popu-
lation conditions. An algorithm that 
makes calculations like Cobb angles 
and a BMI app are relatively safe 
because doctors usually make final 
diagnoses and treatment plans. The 
mathematical formulas do not change 
over time. The shallow AI systems are 
not making absolute diagnoses or direct 
treatment decisions. 

However, deep AI has the promise 
of doing both the “math” and the de-
cision-making. As a positive, deep AI 
may be more consistent than humans 
in applying diagnostic concepts to the 
vast amounts of data that now exist, 
which may be beyond the human 
scope to process in clinical deci-
sion-making. AI also may uncover 
relationships in data far beyond what 

humans can imagine. Still, because 
of self-learning, how a self-trained 
neural network of many layers of dif-
fering perceptrons would make medi-
cal treatment decisions may remain a 
mystery to doctors and patients—an 
AI black box, if you will. 

Understanding the black box may 
become much more important in the 
near future. The FDA and European law 
may require all medical AI to explain 
itself—explainable AI, or XAI. Design-
ing AI neural networks that can explain 
how they make medical decisions is a 
possible solution. Deep AI has no in-
herent language or syntax, and making 
it is no small task. Understanding the 
difference between shallow and deep 
AI, as well as XAI, is a significant chal-
lenge for the future of AI technology 
and will be the subject of the next arti-
cle in this series.

References for the studies cited can be found 
in the online version of this article, available 
at www.aaosnow.org.
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Software as a medical device
The 510(k) software modifications guidance focuses on the risk to users/patients 
resulting from software changes. Categories of software modifications that may 
require premarket submission include a change: 

•	 that introduces a new risk or modifies an existing risk that could result in 
significant harm

•	 to risk controls to prevent significant harm 
•	 that significantly affects clinical functionality or performance specifications of 

a device
When applied to artificial intelligence (AI)/machine learning (ML)-based software 

as a medical device (SaMD), the above approach would require a premarket sub-
mission to the Food and Drug Administration when an AI/ML software modification 
significantly affects device performance, safety, or effectiveness; the modification 
is to the device’s intended use; or the modification introduces a major change to 
the SaMD algorithm. For a Parts Manufacturer Approval-approved SaMD, a supple-
mental application would be required for changes that affect safety or effective-
ness, such as new indications for use, new clinical effects, or significant technolo-
gy modifications that affect performance characteristics. 

To address the critical question of when a continuously learning AI/ML SaMD 
may require premarket submission for an algorithm change, we are prompted to 
reimagine an approach to premarket review for AI/ML-driven software modifica-
tions. Such an approach would need to maintain reasonable assurance of safety 
and effectiveness of AI/ML-based SaMD, while allowing the software to continue 
to learn and evolve over time to improve patient care.

References for the information cited in the sidebar can be found in the online version of 
this article, available at www.aaosnow.org.

Fig. 3 Perceptron functions

The perceptron as a mathematical model of common neurons in the brain. Each neuron may have a specific 
function and as such may require a different mathematical model. Examples of the possible models are here. 
In more complex systems, more sophisticated models are possible, including models with internal mini-neural 
networks that have local memory in order to resolve the use of more complex inputs.
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Fig. 4 Simple, three-layer neural network

This is a standard diagram of a simple neural network with an input layer, one hidden layer, and an output 
layer.
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